Effects of pH, Potential, and Deposition Time on the Durability of Collagen Electrodeposited to Titanium

نویسندگان

  • Hideki Kamata
  • Shoichi Suzuki
  • Yuta Tanaka
  • Yusuke Tsutsumi
  • Hisashi Doi
  • Naoyuki Nomura
  • Takao Hanawa
  • Keiji Moriyama
چکیده

Collagen is expected to work as a bonding agent of soft and hard tissues to solid materials. In this study, the electrodeposition of collagen to a titanium (Ti) surface under various conditions, i.e., the pH of the collagen solution, potential, and electrodeposition time, was performed to understand the optimal electrodeposition conditions for the immobilization of collagen to Ti. The effects of these conditions on the thickness and residual ratio of the collagen layer after shaking in water were evaluated by ellipsometry, scanning probe microscopy, and X-ray photoelectron spectroscopy. Collagen molecules were attracted to Ti cathode and immobilized with high durability by combining electrodeposition conditions, pH 5, alternating potential between 1V and +1V vs. SCE with 1Hz, and 1800 s. The surface of this electrodeposited collagen layer was smooth and uniform maintaining the collagen fibril and natural structure. On the other hand, the collagen layer immobilized by immersion technique in a collagen solution, was rough and irregular. Electrodeposition with alternating potential at pH 5 for 1800 s is a much more appropriate technique to immobilize collagen to Ti than the conventional immersion technique. [doi:10.2320/matertrans.M2010311]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

The Effect of Current Density on Morphology and Texture of Zinc Electrodeposit on Steel

Zinc was electrodeposited from an acidic sulphate solution on commercial steel sheet substrates galvanostatically at 10, 20, and 100 mA/cm2. The steel substrates had an average roughness number of 1.34 microns and a high percentage of its grains had their (111) planes parallel to the plate surface. During electrodeposition at 10 mA/cm2, on some specimens, there was an intense potential fluctuat...

متن کامل

PREPARATION OF CATALYTIC COATING OF TITANIUM OXIDE BY MEANS OF ELECTROLYTIC DEPOSITION

In the current research, the optimum conditions for the electrolytic deposition of TiO2 coatings on titanium pieces were experimentally investigated. Flat pieces of commercially available titanium with dimensions of 50 x20 x3 mm were used as the anode and cathode electrodes. The coatings were applied on the cathode in an electrolyte solution essentially from water and methanol, containing diffe...

متن کامل

Investigation of the electrical properties and corrosion resistance of TiN coating deposited by reactive sputtering on the titanium bipolar plate, used in polymeric fuel cell

The effect of titanium nitride film on the properties of titanium bipolar plates used in polymeric fuel cell was investigated in this research. TiN coatings was deposited on the Ti-grade 1 substrate by using DC-sputtering method. Pure titanium was used as target and coating deposition was done in argon and nitrogen atmosphere. Different TiN thickness was developed by changing sputtering time. T...

متن کامل

The Effect of Current Density on Morphology and Texture of Zinc Electrodeposit on Steel

Zinc was electrodeposited from an acidic sulphate solution on commercial steel sheet substrates galvanostatically at 10, 20, and 100 mA/cm2. The steel substrates had an average roughness number of 1.34 microns and a high percentage of its grains had their (111) planes parallel to the plate surface. During electrodeposition at 10 mA/cm2, on some specimens, there was an intense potential fluctuat...

متن کامل

Characterization and Corrosion Behavior of Hydroxyapatite- Coated Titanium Substrates Prepared Through Laser Induced Liquid Deposition Technique

Titanium and titanium alloys are often used in orthopedic surgery and dentistry because of their especial characteristics such as biocompatibility, mechanical properties, and corrosion resistance. However, their bio- inertness is the most serious drawback for biomedical applications. Therefore, a bioactive coating like hydroxyapatite (HA) is coated on their surface. In this regard, in the prese...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010